Cross-domain anomaly and opportunity detection using 4-layer hierarchical analysis.
Compatible with Claude, Kimi, Gemini, OpenAI, and Ollama.
14 tools total: 7 Friction (divergence detection) + 7 Emergence (confluence detection)
M = (sum(W * L * I)) * f(t) / k_n
Detects when layers diverge: if abs(L1 - L2) > 0.5: alert()
| Tool | Domain | Description |
|---|---|---|
healthcare_phenotype_genotype |
Healthcare | Phenotype-genotype mismatch |
finance_regime_conflict |
Finance | Market regime conflicts |
cyber_attribution_resolver |
Cyber | Attribution uncertainty |
climate_maladaptation |
Climate | Maladaptation prevention |
legal_precedent_drift |
Legal | Precedent drift alert |
military_friction_forecast |
Military | Operational friction |
social_narrative_rupture |
Social | Narrative rupture detection |
Detects when layers align: if min(L) > 0.6: window_detected()
| Tool | Domain | Description |
|---|---|---|
healthcare_precision_therapeutic |
Healthcare | Optimal treatment windows |
finance_confluence_alpha |
Finance | High-conviction setups |
cyber_adversary_overreach |
Cyber | Defensive advantage windows |
climate_resilience_multiplier |
Climate | Multi-benefit interventions |
legal_precedent_seeding |
Legal | Precedent-setting windows |
military_strategic_initiative |
Military | Decisive action windows |
social_catalytic_alignment |
Social | Movement-building windows |
pip install mantic-thinking
# Friction tool (detect risk)
from tools.friction.healthcare_phenotype_genotype import detect as detect_friction
result = detect_friction(phenotypic=0.3, genomic=0.9, environmental=0.4, psychosocial=0.8)
print(f"Alert: {result['alert']}") # Warning about mismatch
# Emergence tool (detect opportunity)
from tools.emergence.healthcare_precision_therapeutic import detect as detect_emergence
result = detect_emergence(genomic_predisposition=0.85, environmental_readiness=0.82,
phenotypic_timing=0.88, psychosocial_engagement=0.90)
print(f"Window: {result['window_detected']}") # True - optimal timing
from adapters.kimi_adapter import get_kimi_tools, execute, compare_friction_emergence
# Get all 14 tools
tools = get_kimi_tools()
# Compare friction vs emergence for same domain
comparison = compare_friction_emergence(
"healthcare",
friction_params={"phenotypic": 0.3, "genomic": 0.9, "environmental": 0.4, "psychosocial": 0.8},
emergence_params={"genomic_predisposition": 0.85, "environmental_readiness": 0.82,
"phenotypic_timing": 0.88, "psychosocial_engagement": 0.90}
)
# High M in friction = risk. High M in emergence = opportunity.
from adapters.claude_adapter import get_claude_tools, execute_tool, format_for_claude
# Get 14 tools in Computer Use format
tools = get_claude_tools()
# Execute and format for Claude
result = execute_tool("finance_confluence_alpha", {
"technical_setup": 0.85, "macro_tailwind": 0.80,
"flow_positioning": 0.75, "risk_compression": 0.70
})
print(format_for_claude(result, "finance_confluence_alpha"))
from adapters.gemini_adapter import get_gemini_tools, execute_tool
# Get tools in Gemini FunctionDeclaration format
tools = get_gemini_tools()
# Or get flat list for simpler SDK usage
from adapters.gemini_adapter import get_gemini_tools_flat
declarations = get_gemini_tools_flat()
result = execute_tool("climate_resilience_multiplier", {
"atmospheric_benefit": 0.75, "ecological_benefit": 0.80,
"infrastructure_benefit": 0.78, "policy_alignment": 0.82
})
from adapters.openai_adapter import get_openai_tools, execute_tool
import openai
# Ollama's OpenAI-compatible endpoint
client = openai.OpenAI(
base_url="http://localhost:11434/v1",
api_key="ollama"
)
tools = get_openai_tools()
# Works with: minimax-m2.1:cloud, gpt-oss:20b-cloud, glm-4.7:cloud, etc.
from adapters.openai_adapter import get_openai_tools, execute_tool, get_tools_by_type
# Get all 14 tools
tools = get_openai_tools()
# Or filter by type
friction = get_tools_by_type("friction") # 7 tools
emergence = get_tools_by_type("emergence") # 7 tools
result = execute_tool("cyber_adversary_overreach", {
"threat_intel_stretch": 0.90, "geopolitical_pressure": 0.85,
"operational_hardening": 0.80, "tool_reuse_fatigue": 0.88
})
mantic-thinking/
├── SKILL.md # Universal manifest
├── README.md # This file
├── schemas/
│ ├── openapi.json # OpenAPI spec
│ └── kimi-tools.json # Kimi native format
├── core/
│ ├── mantic_kernel.py # IMMUTABLE core formula
│ └── validators.py # Input validation
├── tools/
│ ├── friction/ # 7 divergence detection tools
│ └── emergence/ # 7 confluence detection tools
├── adapters/ # Model-specific adapters (Claude/Kimi/Gemini/OpenAI)
├── configs/ # Domain configurations & framework docs
│ ├── mantic_tech_spec.md # Technical specification
│ ├── mantic_explicit_framework.md # Framework protocol
│ ├── mantic_health.md # Healthcare domain config
│ ├── mantic_finance.md # Finance domain config
│ └── ... # (8 domain configs total)
└── tests/ # Cross-model validation
# Quick sanity check
python3 -c "from adapters.openai_adapter import get_openai_tools; print(len(get_openai_tools()), 'tools ready')"
# Run all tests
python3 -m pytest tests/test_cross_model.py -v
# Test individual tool
python3 tools/emergence/healthcare_precision_therapeutic.py
| M-Score | Friction (Risk) | Emergence (Opportunity) |
|---|---|---|
| 0.1-0.3 | Low risk | Low opportunity (wait) |
| 0.4-0.6 | Moderate friction | Favorable window |
| 0.7-0.9 | High risk | Optimal window |
The M-score measures intensity. Friction tools interpret high intensity as danger. Emergence tools interpret high intensity as opportunity.
The configs/ directory contains framework documentation and domain-specific configurations:
- Framework docs: Technical specification, explicit framework mode, reasoning guidelines
- Domain configs: Healthcare, Finance, Cybersecurity, Climate, Legal, Social, Command, Current Affairs
These provide layer mappings and cross-domain coupling patterns for implementing domain-specific tools.
- Immutable Core:
mantic_kernel.pymust not be modified - Deterministic: Same inputs always return same outputs
- No External APIs: Pure Python + NumPy only
- Cross-Model Compatible: Works with Claude, Kimi, Codex, GPT-4o
- Complementary Suites: Friction for risks, Emergence for opportunities
- Simple Logic: Each tool
See CONTRIBUTING.md. We accept contributions from individuals only and require
Signed-off-by commits (DCO).
Elastic License 2.0 — See LICENSE for full text.
tl;dr:
- Free to use, modify, distribute for internal applications
- Can use in production for your own organization
- Cannot offer as a hosted/managed service (SaaS)
- Cannot embed in commercial products without commercial license
- Cannot remove license protections
Want to build a SaaS on top of Mantic? Embed it in your product? Redistribute?
Purchase a commercial license — See COMMERCIAL_LICENSE for pricing and terms.
| Tier | Best For | From |
|---|---|---|
| Startup | $500/year | |
| Growth | $5,000/year | |
| Enterprise | Unlimited internal, large orgs | $25,000/year |
| OEM/SaaS | Embed, resell, offer as service | Custom (from $50k) |
Contact: licensing@manticthink.com
All licenses include updates and email support. OEM includes custom development options.
1.1.3 – Input validation and confluence logic refinement
1.1.2 – PyPI install instructions updated