Examples
Simple local usage:
ollama pull llama3.1:70b
ollama pull llama3.1:8b
python3 cli.py exec \
–orchestrator ollama:llama3.1:70b \
–worker ollama:llama3.1:8b \
–task “Summarize 10 news articles”
This runs a planner + worker flow fully locally.
Hybrid cloud + local usage:
export ANTHROPIC_API_KEY=”sk-ant‑…”
ollama pull llama3.1:8b
python3 cli.py exec \
–orchestrator anthropic:claude-3-7-sonnet-20250219 \
–worker ollama:llama3.1:8b \
–task “Compare 5 products”
export ANTHROPIC_API_KEY=”sk-ant‑…”
ollama pull llama3.1:8b
python3 cli.py exec \
–orchestrator anthropic:claude-3-7-sonnet-20250219 \
–worker ollama:llama3.1:8b \
–task “Compare 5 products”
Routes tasks between cloud provider models and a local worker.
TUI chat mode:
python3 cli.py chat \
–orchestrator anthropic:claude-3 \
–worker ollama:llama3.1:8b
Interactive CLI chat with live logs and cost breakdown.
Why it matters
• Orchestrate multiple LLMs — OpenAI, Anthropic, Ollama/llama.cpp — without writing custom routing logic.
• Smart routing and fallback — choose better models for each task and fall back heuristically or learned over time.
• Cost tracking & session logs — see costs per run and preserve history locally.
• Optional scraping + caching — enrich tasks with real web data if needed.
• Optional MCP server integration — serve llm‑use workflows via PolyMCP.
llm‑use makes it easier to build robust, multi‑model LLM systems without being tied to a single API or manual orchestration.